Memantine inhibits efferent cholinergic transmission in the cochlea by blocking nicotinic acetylcholine receptors of outer hair cells.
نویسندگان
چکیده
Memantine is a blocker of Ca(2+)-permeable glutamate and nicotinic acetylcholine receptors (nAChR). We investigated the action of memantine on cholinergic synaptic transmission at cochlear outer hair cells (OHCs). At this inhibitory synapse, hyperpolarization of the postsynaptic cell results from opening of SK-type Ca(2+)-activated K(+) channels via a highly Ca(2+)-permeable nAChR containing the alpha 9 subunit. We show that inhibitory postsynaptic currents recorded from OHCs were reversibly blocked by memantine with an IC(50) value of 16 microM. RT-PCR revealed that a newly cloned nAChR subunit, alpha 10, is expressed in OHCs. In contrast to homomeric expression, coexpression of alpha 9 and alpha 10 subunits in Xenopus laevis oocytes resulted in robust acetylcholine-induced currents, indicating that the OHC nAChR may be an alpha 9/alpha 10 heteromer. Accordingly, nAChR currents evoked by application of the ligand to OHCs and currents through alpha 9/alpha 10 were blocked by memantine with a similar IC(50) value of about 1 microM. Memantine block of alpha 9/alpha 10 was moderately voltage dependent. The lower efficacy of memantine for inhibition of inhibitory postsynaptic currents (IPSCs) most probably results from a blocking rate that is slow with respect to the short open time of the receptor channels during an IPSC. Thus, synaptic transmission in OHCs is inhibited by memantine block of Ca(2+) influx through nAChRs. Importantly, prolonged receptor activation and consequently massive Ca(2+) influx, as might occur under pathological conditions, is blocked at low micromolar concentrations, whereas the fast IPSCs initiated by short receptor activation are only blocked at concentrations above 10 microM.
منابع مشابه
Mice Lacking the Alpha9 Subunit of the Nicotinic Acetylcholine Receptor Exhibit Deficits in Frequency Difference Limens and Sound Localization
Sound processing in the cochlea is modulated by cholinergic efferent axons arising from medial olivocochlear neurons in the brainstem. These axons contact outer hair cells in the mature cochlea and inner hair cells during development and activate nicotinic acetylcholine receptors composed of α9 and α10 subunits. The α9 subunit is necessary for mediating the effects of acetylcholine on hair cell...
متن کاملThe nicotinic receptor of cochlear hair cells: a possible pharmacotherapeutic target?
Mechanosensory hair cells of the organ of Corti transmit information regarding sound to the central nervous system by way of peripheral afferent neurons. In return, the central nervous system provides feedback and modulates the afferent stream of information through efferent neurons. The medial olivocochlear efferent system makes direct synaptic contacts with outer hair cells and inhibits ampli...
متن کاملRole of Nicotinic Acetylcholine Receptor on Efferent Inhibition in Cochlear Hair Cell
The α9α10 nicotinic acetylcholine receptors (nAChRs) mediates efferent inhibition of hair cell function within the auditory sensory organ. Gating of the nAChRs leads to activation of calcium-dependent potassium channels to hyperpolarize the hair cell. In efferent system, main calcium providers to SK channel are nAChR and synaptic cistern, which contribution to efferent inhibition is different b...
متن کاملAcetylcholine-evoked calcium increases in Deiters' cells of the guinea pig cochlea suggest alpha9-like receptors.
The medial efferent system innervates outer hair cells in the organ of Corti. Neurotransmission at this synapse is mediated by acetylcholine (ACh) acting on nicotinic ACh receptors containing the alpha9 subunit. In addition to the sensory cells, the supporting cells of the mammalian cochlea also receive efferent innervation but the neurotransmitter(s) at these synapses are not known. We show sl...
متن کاملOnset of cholinergic efferent synaptic function in sensory hair cells of the rat cochlea.
In the developing mammalian cochlea, the sensory hair cells receive efferent innervation originating in the superior olivary complex. This input is mediated by α9/α10 nicotinic acetylcholine receptors (nAChRs) and is inhibitory due to the subsequent activation of calcium-dependent SK2 potassium channels. We examined the acquisition of this cholinergic efferent input using whole-cell voltage-cla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 60 1 شماره
صفحات -
تاریخ انتشار 2001